Abstract

A three-dimensional (3-D) transient numerical model of an alkaline water electrolysis (AWE) cell with potassium hydroxide solution is developed by rigorously accounting for the hydrogen and oxygen evolution reactions and resulting species and charge transport through various AWE components. First, the AWE model is experimentally validated against a polarization curve corresponding to a wide range of currents as high as 2.0 A·cm−2. In general, the simulation results compare well with the measured data and further reveal the operating characteristics of AWE cells, showing key distributions of solid/electrolyte potentials and multidimensional contours of reactant and product concentrations at various current densities. In particular, the contribution of hydroxide ion (OH−) diffusion to the ohmic losses through porous electrodes and a porous separator are quantitatively examined at low and high electrolyte flow rates. The present full 3-D AWE model provides a basic understanding of the electrochemical and transport phenomena and can be further applied to practical large-scale AWE cell and stack geometries for grid-scale hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.