Abstract

Knowledge of the metabolism of functional enzymes is the key to accelerate the transformation and utilization of raw materials during high temperature Daqu (HTD) manufacturing. However, the metabolic contribution of raw materials-wheat is always neglected. In this research, the relationship between the metabolism of wheat and microorganisms was investigated using physicochemical and sequencing analysis method. Results showed that the process of Daqu generation was divided into three stages based on temperature. In the early stage, a positive correlation was found between Monascus, Rhizopus and glucoamylase metabolism (r > 0.8, p < 0.05). Meanwhile, the glucoamylase metabolism in wheat occupied 63.8 % of the total matrix at the day 4. In the middle to later stages, the wheat metabolism of proteases, α-amylases and lipases in gradually reached their peak. Additionally, Lactobacillus and α-amylases presented a positive correlation (r > 0.7, p < 0.05), and the α-amylases metabolism in wheat occupied 22.18 % of the total matrix during the same time period. More importantly, the changes of enzyme activity metabolic pathway in wheat and microorganism were reflected by respiratory entropy (RQ). Overall, these results guide the choice of substrate during Daqu production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.