Abstract
Abstract Significant progress in several areas will have to be made to achieve the required technological and safety standards for future Gen. IV reactors, including both novel experimental methods (starting with separate-effect, then followed by integral experiments) and high performance computational models characterized by the necessary level of modeling detail and high accuracy of predictions. Furthermore, it is important that the experimental and theoretical/computational research complement each other, so that the results of measurements could be directly used for model validation purposes, whereas the results of simulations should provide input to identify modeling uncertainties and provide guidelines for prioritizing future experiments. The purpose of this paper is to present the modeling concept for mechanistic computer simulations of the injection of a jet of gaseous fission products into a partially blocked SFR coolant channel following localized cladding overheat and breach. A three-dimensional model of gas/liquid-sodium interaction has been developed based on a multifield modeling framework implemented in the NPHASE-CMFD code. The boundary conditions used as input to NPHASE-CMFD have been obtained by averaging the results of direct numerical simulations (DNS) performed using the PHASTA code. The novel aspects of the results discussed in the paper include the demonstration of advantages of using a multiscale approach to model local phenomena governing gas/liquid-sodium two-phase flow inside reactor coolant channels following cladding breach, as well as the observations about areas where future experiments are needed to improve the predictive capabilities of two-phase flow models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.