Abstract

Maximum likelihood and Bayesian procedures for item selection and scoring of multidimensional adaptive tests are presented. A demonstration using simulated response data illustrates that multidimensional adaptive testing (MAT) can provide equal or higher reliabilities with about one-third fewer items than are required by one-dimensional adaptive testing (OAT). Furthermore, holding test-length constant across the MAT and OAT approaches, substantial improvements in reliability can be obtained from multidimensional assessment. A number of issues relating to the operational use of multidimensional adaptive testing are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.