Abstract
Multidetector computed tomography-based trabecular bone microstructure analysis ensures promising results in fracture risk prediction caused by osteoporosis. Because multidetector computed tomography is associated with high radiation exposure, its clinical routine use is limited. Hence, in this study, we investigated in 11 thoracic midvertebral specimens whether trabecular texture parameters are comparable derived from (1) images reconstructed using statistical iterative reconstruction (SIR) and filtered back projection as criterion standard at different exposures (80, 150, 220, and 500 mAs) and (2) from SIR-based sparse sampling projections (12.5%, 25%, 50%, and 100%) and equivalent exposures as criterion standard. Twenty-four texture features were computed, and those that showed similar values between (1) filtered back projection and SIR at the different exposure levels and (2) sparse sampling and equivalent exposures and reconstructed with SIR were identified. These parameters can be of equal value in determining trabecular bone microstructure with lower radiation exposure using sparse sampling and SIR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.