Abstract

We propose a multi-depth three-dimensional (3D) image cryptosystem by employing the phase retrieval algorithm in the Fresnel and fractional Fourier (Fr-FrF) domains. Encryption was realized by applying the phase retrieval algorithm based on the double-random-phase-encoding architecture in which two encryption keys will be incessantly updated in each iteration loop. The phase-only functions (POFs) are generated in two cascaded Fr-FrF transforms (Fr-FrFT), serving as decryption keys to efficiently reduce the speckle noise and crosstalk between encrypted 3D image depths. The use of Fr-FrFT position parameters and fractional order as decryption keys further extended the key space, enhancing the cryptosystem's security level. Numerical simulations demonstrated the feasibility and robustness of our proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.