Abstract

Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009), combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study). Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh) stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis).CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated); snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer-term observations because, (a) living biomass is increasingly dominated by very large trees whose dead trunks have longer residence time in the CWD pool, and (b) infrequent major disturbances, thought to be important in the dynamics of these forests, have not occurred during the study period but would be expected to produce major, episodic pulses in CWD input.Few fragments of old-growth cool-temperate forests remain, but such forests can constitute a very large carbon pool on a per-area basis. The carbon sink/source status of these forests remains unclear. While aboveground living biomass at this study site shows no strong aggrading or declining trend over the last half-century, this remains a modest span in the innate time-scale of late-successional forest. The effects of rare disturbances, long-term shifts in composition and size structure, and changes in soil carbon and CWD pools may all influence long-term carbon status.

Highlights

  • Old-growth temperate forests include stands with the highest known densities of living biomass (Keith, Mackey & Lindenmayer, 2009) and large pools of persistent dead biomass add substantially to total carbon reservoirs

  • Several recent authors have suggested that old-growth forests can act as carbon sinks as well as important carbon reservoirs (Keeton et al, 2010; Keeton et al, 2011), the temporal dynamics of living or dead biomass components have been inferred from modeling of forest growth or from space-for-time substitution

  • Canopy composition ranges from strong hardwood (Acer saccharum Marshall, Tilia americana L.) dominance on high-cation soils to varying mixes of A. saccharum and Tsuga canadensis (L.) Carriere on other soils (Woods, 2000)

Read more

Summary

Introduction

Old-growth temperate forests include stands with the highest known densities of living biomass (Keith, Mackey & Lindenmayer, 2009) and large pools of persistent dead biomass add substantially to total carbon reservoirs. In typical old-growth forests, large individual trees contribute disproportionately to total biomass in the highest-biomass stands (Brown, Schroeder & Birdsey, 1997; Keith, Mackey & Lindenmayer, 2009; Keeton et al, 2011). These generalizations are based on a relatively few studies with biomass estimates from direct measurement of trees—fewer than a dozen from northeastern North America (see below)—and most of these are based on one-time measurements. It is important to assess whether ecosystem properties like biomass density show significant general or predictable trends in old-growth forests

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call