Abstract
Multidecadal sea level variation in the Baltic Sea is investigated from 1900 to 2020 deploying satellite and in situ datasets. As a part of this investigation, nearly 30 years of satellite altimetry data are used to compare with tide gauge data in terms of linear trend. This, in turn, leads to validation of the regional uplift model developed for the Fennoscandia. The role of North Atlantic Oscillation (NAO) in multidecadal variations of the Baltic Sea is also analyzed. Although NAO impacts the Baltic Sea level on seasonal to decadal time scales according to previous studies, it is not a pronounced factor in the multidecadal variations. The acceleration in the sea level rise of the basin is reported as statistically insignificant in recent studies or even decelerating in an investigation of the early 1990s. It is shown that the reason for these results relates to the global warming hiatus in the 1950s−1970s, which can be seen in all eight tide gauges used for this study. To account for the slowdown period, the acceleration in the basin is investigated by fitting linear trends to time spans of six to seven decades, which include the hiatus. These results imply that the sea level rise is accelerated in the Baltic Sea during the period 1900–2020.
Highlights
Sea level rise as a result of climate change is one of the significant environmental threats which requires a deep understanding globally and on regional scales
Because of the crustal land uplift, a substantial part of the Baltic Sea coast is safe from future sea level rise, understanding the mechanism of sea level variability in the region is important since several reliable sea level measurements stretching back to the 18th century are located in this region
It starts with the altimetry era and comparing the sea level rise estimated by satellite altimetry and tide gauge data
Summary
Sea level rise as a result of climate change is one of the significant environmental threats which requires a deep understanding globally and on regional scales. To be able to use these measurements in global-scale analyses, the geophysical and climate-related processes need to be understood to separate the global effects from regional drivers. This is the reason that there have been numerous studies addressing these variations in the Baltic Sea (Hünicke and Zorita, 2008; Hünicke et al, 2015).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.