Abstract

In recent years, declining insect biodiversity has sparked interest among scientists and drawn the attention of society and politicians. However, our understanding of the extent of this decline is incomplete, particularly for freshwater insects that provide a key trophic link between aquatic and terrestrial ecosystems, but that are also especially vulnerable to climate change. To investigate the response of freshwater insects to climate change, we quantified shifts in insect abundance and diversity across 7264 samples covering Central Europe during 1990–2018 and related these changes to annual data on temperature and precipitation. We observed both increases in richness (10.6 %) and abundance (9.5 %) of freshwater insects over the past three decades. These changes were related to increases in summer temperature and summer precipitation, which had negative effects on species richness, and to increases in winter temperature and precipitation, which had positive effects. Further we found that increased temperature was generally related to increased abundance, whereas increased precipitation was associated with declines, thus highlighting the particularly varying impacts on differing insect orders. Given that freshwater insects have been more severely affected by global change than marine and terrestrial species, the observed increases are a positive sign, but the overall situation of freshwater invertebrates is still critical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.