Abstract
In discrete sizing optimization of truss and frame structures the design variables take values from databases, which are usually populated with a relatively small number of cross-section types and sizes. The aim of this work is to allow the use of large-size databases in discrete structural sizing optimization problems, in order to enrich the set of design variable options and increase the potential of achieving high-quality optimal designs. For this purpose, the concept of coarse database is introduced, according to which smaller-size versions of an appropriately ordered large database can be constructed. This concept is combined with the idea of cascading, which allows a single optimization problem to be tackled with a number of autonomous optimization stages. Under this context, several coarse versions of the same full-size database are formed, in order to utilize a different database in each cascade stage executed with an evolutionary optimization algorithm. The first optimization stages of the resulting multi-database cascade procedure make use of the coarsest database versions available and serve the purpose of basic design space exploration. The last stages exploit finer databases (including the original full-size database) and aim in fine tuning the achieved optimal solution. Based on the reported numerical results, multi-database cascading proves to be an effective tool for the handling of large databases and corresponding extensive design spaces in the framework of discrete structural sizing optimization applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.