Abstract

Abstract We present a method in which the contributions from the individual crystallites in a polycrystalline sample are separated and treated as essentially single crystal data sets. The process involves the simultaneous determination of the orientation matrices of the individual crystallites in the sample, the subsequent integration of the individual peaks, and filtering and summing of the subsequent integrated intensities, in order to arrive at a single-crystal like data set which may be treated normally. In order to demonstrate the method, we consider as a test case a small molecule structure, cupric acetate monohyrade. We show that it is possible to obtain a single-crystal quality structure solution and refinement, in which accurate anisotropic thermal parameters and hydrogen atom positions are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call