Abstract

The de Almeida-Thouless (AT) line in Ising spin glasses is the phase boundary in the temperature T and magnetic field h plane below which replica symmetry is broken. Using perturbative renormalization group (RG) methods, we show that, when the dimension d of space is just above six, there is a multicritical point (MCP) on the AT line, which separates a low-field regime, in which the critical exponents have mean-field values, from a high-field regime, where the RG flows run away to infinite coupling strength; as d approaches six from above, the MCP approaches the zero-field critical point exponentially in 1/(d-6). Thus, on the AT line, perturbation theory for the critical properties breaks down at a sufficiently large magnetic field even above 6 dimensions, as well as for all nonzero fields when d≤6, as was known previously. We calculate the exponents at the MCP to first order in ϵ=d-6>0. The fate of the MCP as d increases from just above six to infinity is not known.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call