Abstract
We have studied the bandwidth-temperature-magnetic-field phase diagram of RE0.55Sr0.45MnO3 colossal magnetoresistance manganites with ferromagnetic metal (FM) ground state. The bandwidth was controlled both via chemical substitution and hydrostatic pressure with a focus on the vicinity of the critical pressure p;{*} where the character of the zero-field FM transition changes from first to second order. Below p;{*} the first-order FM transition extends up to a critical magnetic field. It approaches zero on the larger bandwidth side where the surface of the first-order FM phase boundary is terminated by a multicritical end point. The change in the character of the transition and the decrease of the colossal magnetoresistance effect is attributed to the reduced charge-order and orbital-order fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.