Abstract
For ferromagnet/superconductor (F/S) layered structures, new 3D Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states are predicted. In most cases, these states are characterized by a higher critical temperature Tc than the known 1D LOFF states. It is shown that the nonmonotonic behavior of Tc is determined by the oscillations of the Cooper pair flux through the F/S boundary, which occur as a result of the 3D-1D-3D phase transitions at the Lifshits triple points. The appearance of the new 3D LOFF states and the presence of nonmagnetic impurities leads to a strong damping of the 1D oscillations of the LOFF pair amplitude and to a considerable smoothing of the dependence of Tc on the F layer thickness df. An interpretation of the behavior of the experimental dependences Tc(df) obtained for F/S structures is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental and Theoretical Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.