Abstract

Railway line capacity is growing in importance as a criterion for the assessment of railroad infrastructure performance. This problem is becoming more and more relevant as the demand for rail transport increases, especially considering the transport policy related to the promotion of climate-neutral means of transport. Insufficient capacity affects the stability and reliability of railway traffic operations. The analytical methods used for capacity estimation are typically insufficient to solve problems of a multicriteria nature (i.e. problems which take traffic heterogeneity and human factors into account). Optimisation methods, on the other hand, usually yield the best results if the current timetable for a given line is known. Additionally, they do not strongly consider the impact of the running characteristics of a specific train type and of the system or several systems in operation on the line (e.g. national Class B system and ERTMS/ETCS system). Therefore, this paper proposes a model and a simulation program developed in the Matlab and Simulink environment to be used to simulate on-route train movement, to study railroad capacity with different control systems, as well as for predictive train control to minimise energy losses. The authors described the assumptions adopted for the simulation program and the input parameters configurable against a specific line segment. They also discussed selected results derived from simulations of controlling the departure of trains to a railway line with the purpose of energy loss reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call