Abstract

Online environments have evolved from the early-stage technical systems to social platforms with social communication mechanisms resembling the interactions which can be found in the real world. Online marketers are using the close relations between the users of social networks to more easily propagate the marketing contents in their advertising campaigns. Such viral marketing campaigns have proven to provide better results than traditional online marketing, hence the increasing research interest in the topic. While the majority of the up-to-date research focuses on maximizing the global coverage and influence in the complete network, some studies have been conducted in the area of budget-constrained conditions as well as in the area of targeting particular groups of nodes. In this paper, a novel approach to targeting multi-attribute nodes in complex networks is presented, in which an MCDA method with various preference weights for all criteria is used to select the initial seeds to best reach the targeted nodes in the network. The proposed approach shows some symmetric characteristics—while the global coverage in the network is decreased, the coverage amongst the targeted nodes grows.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call