Abstract

Order acceptance is an important issue in job shop production systems where demand exceeds capacity. In this paper, a neural network approach is developed for order acceptance decision support in job shops with machine and manpower capacity constraints. First, the order acceptance decision problem is formulated as a sequential multiple criteria decision problem. Then a neural network based preference model for order prioritization is described. The neural network based preference model is trained using preferential data derived from pairwise comparisons of a number of representative orders. An order acceptance decision rule based on the preference model is proposed. Finally, a numerical example is discussed to illustrate the use of the proposed neural network approach. The proposed neural network approach is shown to be a viable method for multicriteria order acceptance decision support in over-demanded job shops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.