Abstract

The paper is about multicriteria optimization of thin-walled cylindrical shells subjected to simple loads, such as axial compression and external pressure, and combined loads (axial compression and pressure). The optimization problem is given as a bicriterial one, with the weight of the shell as the first objective, and the flexibility of the shell as the second. The set of constraints includes the stability condition, strength conditions for each layer, technological and constructional requirements, and so on. Numerical calculations were obtained with the help of the program MOST. MOST is designed to solve multicriteria optimization problems for nonlinear engineering models with discrete and continuous decision variables. In MOST a concept of Pareto optimum is introduced for generating a set of optimal compromise solutions. The best optimal solution must be chosen from the Pareto optimal set with the help of the preference functions. Results of numerical calculations are presented in the form of tables and diagrams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.