Abstract

Multicriteria optimization methodology was applied in development of UHPLC-UV-MS method for separation of cilazapril, hydrochlorothiazide and their degradation products. This method is also applicable for analysis of cilazapril, hydrochlorothiazide and their degradation products in combined tablet formulation. Prior to method optimization forced degradation studies were conducted. Cilazapril and hydrochlorothiazide were subjected to acidic (0.1, 0.5 and 1.0 M HCl), basic (0.1, 0.5 and 1.0 M NaOH), thermal (70°C), oxidative (3-30% H2O2) degradation and photodegradation (day light). Cilazapril appeared to be unstable toward acid and base and resulted in formation of cilazaprilat. Hydrochlorothiazide significantly degraded after acid, base and thermal hydrolysis and formed degradation product was 4-amino-6-chlorobenzene-1.3-disulfonamide. For both substances, after oxidative degradation unknown products have arisen. Initial percentage of acetonitrile in mobile phase, final percentage of acetonitrile in mobile phase, time of gradient elution and column temperature were defined as variables to be optimized toward two chromatographic responses by means of central composite design and Derringer's desirability function. The satisfactory chromatographic analysis was achieved on Kinetex C18 (2.6 µm, 50 × 2.1 mm) column with temperature set at 25°C. The final mobile phase consisted of acetonitrile and 20 mM ammonium formate buffer (pH adjusted to 8.5). The flow rate of the mobile phase was400 μL min-1 and it was pumped in a gradient elution mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.