Abstract
The degree of similarity or dissimilarity between the objects under study plays an important role. In vector space, especially, the cosine similarity measure is often used in information retrieval, citation analysis, and automatic classification. However, it scarcely deals with trapezoidal fuzzy information and multicriteria decision-making problems. For this purpose, a cosine similarity measure between trapezoidal fuzzy numbers is proposed based on an extension of the cosine similarity between fuzzy sets and is applied to fuzzy multicriteria decision-making problems under the conditions that the criteria weights and the evaluated values in the decision matrix are expressed by the form of trapezoidal fuzzy numbers. Through the expected weight and the weighted cosine similarity measure between each alternative and the ideal alternative, the ranking order of all alternatives can be determined and the best alternative can be easily identified as well. The proposed method is simple and effective. Finally, an illustrative example demonstrates the implementation process of the technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering, Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.