Abstract

The next generation of radio telescopes, such as the Square Kilometer Array (SKA), will need to process an incredible amount of data in real-time. In addition, the sensitivity of SKA will require a new generation of calibration and imaging software to exploit its full potential. The wide-field direction-dependent spectral deconvolution framework, called DDFacet, has been successfully used in several existing SKA pathfinders and precursors like MeerKAT and LOFAR. This imager allows a multi-core execution based on facets parallelization and a multi-node execution based on observations parallelization. However, because of the amount of data to be processed, the data on a single observation will have to be distributed on several nodes. This paper proposes the first two-level parallelization of DDFacet in the case of a single observation. A multi-core parallelization based on facets and a multi-node parallelization based on frequency distribution grouped in Measurement Sets. We show that this multi-core multi-node parallelization has successfully reduced the total execution time by a factor of 5.7 on a LOFAR dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call