Abstract

Multi-port beam splitters are cornerstone devices for high-dimensional quantum information tasks, which can outperform the two-dimensional ones. Nonetheless, the fabrication of such devices has proven to be challenging with progress only recently achieved with the advent of integrated photonics. Here, we report on the production of high-quality N × N (with N = 4 , 7 ) multi-port beam splitters based on a new scheme for manipulating multi-core optical fibers. By exploring their compatibility with optical fiber components, we create four-dimensional quantum systems and implement the measurement-device-independent random number generation task with a programmable four-arm interferometer operating at a 2 MHz repetition rate. Due to the high visibilities observed, we surpass the one-bit limit of binary protocols and attain 1.23 bits of certified private randomness per experimental round. Our result demonstrates that fast switching, low loss, and high optical quality for high-dimensional quantum information can be simultaneously achieved with multi-core fiber technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.