Abstract

In magnetic resonance imaging (MRI), the super-resolution technology has played a great role in improving image quality. The aim of this paper is to improve edges of brain MRI by incorporating the gradient information of another contrast high-resolution image. Multi-contrast images are assumed to possess the same gradient direction in a local pattern. We proposed to establish a relation model of gradient value between different contrast images to restore a high-resolution image from its input low-resolution version. The similarity of image patches is employed to estimate intensity parameters, leading a more accurate reconstructed image. Then, an iterative back-projection filter is applied to the reconstructed image to further increase the image quality. The new approach is verified on synthetic and real brain MRI images and achieves higher visual quality and higher objective quality criteria than the compared state-of-the-art super-resolution approaches. The gradient information of the multi-contrast MRI images is very useful. With a proper relation model, the proposed method enhances image edges in MRI image super-resolution. Improving the MRI image resolution from very low-resolution observations is challenging. We tackle this problem by first modeling the relation of gradient value in multi-contrast MRI and then performing fast supper-resolution methods. This relation model may be helpful for other MRI reconstruction problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.