Abstract

Sensor networks that carry heterogeneous traffics and are responsible for reporting very time-critical important events necessitate an efficient and robust data dissemination framework. Designing such a framework, that can achieve both the reliability and delay guarantee while preserving the energy efficiency, namely multi-constrained QoS (MCQoS), is a challenging problem. Although there have been many research works on QoS routing for sensor networks, to the best of our knowledge, no one addresses the above three service parameters all together. In this paper, we propose a new aggregate routing model and a distributed aggregate routing algorithm (DARA) that implements the model for achieving MCQoS. DARA is designed for multi-sink, multipath and location aware network architecture. We develop probabilistic models for multipath reliability constraint, sojourn time of a packet at an intermediary node and node energy consumption. Delay-differentiated multi-speed packet forwarding and in-node packet scheduling mechanisms are also incorporated with DARA. The results of the simulations demonstrate that DARA effectively improves the reliability, delay guarantee and energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.