Abstract

The efficiency of the multiconfigurational time-dependent Hartree (MCTDH) method for calculating the initial-state selected dissociation probability of H(2)(v=0,j=0) on Cu(100) is investigated. The MCTDH method is shown to be significantly more efficient than standard wave packet methods. A large number of single-particle functions is required to converge the initial-state selected reaction probability for dissociative adsorption. Employing multidimensional coordinates in the MCTDH ansatz (mode combination) is found to be crucial for the efficiency of these MCTDH calculations. Perspectives towards the application of the MCTDH approach to study dissociative adsorption of polyatomic molecules on surfaces are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.