Abstract
This study concerns optimization of shapes, locations, and dimensions of internal cooling passages within a turbine vane under severe environments. The basic aim is to achieve a design that minimizes the average temperature and ensures the structural strength. Considering the prohibitive computational cost of 3D models, numerical optimization process is performed based on 2D cross-sectional models with available experimental temperature data as boundary conditions of thermomechanical analysis. To model the cooling channels, three kinds of shape configurations, i.e., circle, superellipse, and near-surface holes, are taken into account and compared. Optimization results of 2D models are obtained by using a globally convergent method of moving asymptotes (GCMMA). Furthermore, full conjugate heat transfer (CHT) analyses are made to obtain temperature distributions of 3D models extruded from 2D ones by means of shear stress transport (SST) k-ω turbulence model. It is shown that optimization of cooling passages effectively improves the thermomechanical performances of turbine vanes in comparison with those of initial C3X vane. The maximum temperature of optimized vane could be reduced up to 50 K without degrading mechanical strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.