Abstract

We present a multiconfiguration self-consistent field (MCSCF) procedure employing recently developed approximations for electron repulsion integrals. Molecular charge distributions in the two-electron interaction part are expanded into atomic-electron distributions without linear dependencies, and the four-center quantities of electron repulsion integrals are reduced to two- and three-center quantities. The method is plugged into the approximate second-order MCSCF procedure and applied to calculations of the HNO molecule. This procedure enables us to reduce the CPU time of the integral transformation step which is usually the most time consuming. It is also shown that the present approximation is very accurate not only for the ground state but also for the low-lying excited states, even after a substantial reduction of the number of required integrals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.