Abstract

Reactive transport simulations were used to examine the chemical evolution of deep geothermal fluids as they ascend to the surface, and to assess constraints on the application of solute geothermometers. Al and Mg concentrations of deep fluids are sensitive to precipitation-dissolution processes, affecting reservoir temperatures estimated with multicomponent geothermometry. The concentrations of major elements such as Na, K, and SiO2 are less sensitive to reequilibration, and thus geothermometers based on these elements are often reliable, but fail when dilution or mixing with saline waters occurs. For these cases, multicomponent geothermometry coupled with optimization provides a more reliable approach to reconstruct the fluid composition at depth and estimate reservoir temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.