Abstract

The Manuguru geothermal area, located in the Khammam district of Telangana state, India, is one of the least explored medium-enthalpy geothermal systems in India. In this study, subsurface reservoir temperature was estimated by applying various methodologies such as chemical geothermometry, multicomponent geothermometry and mixing models. Chemical geothermometers provided wide range in temperature estimation, and most of them (Na–K, Na–K–Ca, Mg-corrected Na–K–Ca) were found to be unsuitable for predicting reservoir temperature due to the absence of attainment of equilibrium between suitable mineral pairs. The temperature range estimated from the quartz geothermometers varied from 72 to 120 °C which matched closely with values obtained from K–Mg geothermometers. To overcome this problem and to better constrain the reservoir temperature, multicomponent solute geothermometry modelling was carried out by applying the GeoT computer code. Fluid reconstruction was done after taking into account both the degassing and mixing phenomena. GeoT modelling of the reconstructed fluid provided excellent clustering of the minerals. From the GeoT modelling study, it was found that minerals like quartz, chalcedony, calcite, etc., attained simultaneous equilibrium with thermal waters in the temperature range of 130 ± 10 °C, which can be taken as the most probable reservoir temperature. The subsurface temperature (137 °C) obtained from the mixing model further validated the results obtained from multicomponent geothermometry. This integrated multicomponent method and the simulation program used in this study take into account various processes (i.e. mixing, degassing, non-attainment of equilibrium, etc.) which affect the composition of the thermal fluids during its ascent to the surface. The statistical approach of ‘best clustering minerals’ used in this model helps to overcome the problems encountered in applying cation or single-component geothermometers in the medium-enthalpy geothermal systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call