Abstract

Multicomponent transport through membranes is encountered in many applications, including photoelectrochemical CO2 reduction devices that convert CO2 into alcohols. We report the use of in-situ ATR FTIR spectroscopy to quantify the permeability of Selemion AMV, a commonly used anion exchange membrane, to mixtures of alcohols. An in-situ ATR FTIR spectrophotometer probe inserted into a standard diffusion cell enabled straightforward measurement of membrane permeability in multicomponent transport experiments without the need to periodically remove aliquots from the diffusion cell. The solubilities of alcohols in Selemion AMV were measured using a standard sorption/desorption technique. The solution-diffusion model was used to calculate alcohol diffusivities in Selemion AMV from measured permeabilities and solubilities. The relative contributions of alcohol solubility and diffusivity to overall permeability are discussed, and changes in permeability, solubility, and diffusivity with changing composition in binary and ternary alcohol mixtures are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.