Abstract

In this paper, we study two-color, two-flavor QCD using chiral perturbation theory at next-to-leading order when the diquark chemical potential ($\mu_{B}$) is equal to the isospin chemical potential ($\mu_{I}$). For chemical potentials larger than the physical pion mass, the system is in a multicomponent superfluid phase with both pions and diquarks. We construct the one-loop effective potential using $\chi$PT in the presence of an external multicomponent superfluid source and use the effective potential to calculate the chiral condensate, the multicomponent superfluid condensate and the (multicomponent) superfluid density. We also find the critical chemical potential and the order of the phase transition from the normal phase to the multicomponent condensed phase at next-to-leading order. The phase transition remains second order (as at tree-level) and the critical chemical potential is equal to the one-loop renormalized diquark (or pion) mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.