Abstract

A series of mixed crystals composed of Cu(2)ZnSnS(4), Ag(2)ZnSnS(4) and ZnS was prepared by co-precipitation of the corresponding metal ions in aqueous sodium sulfide followed by annealing in a sulfur atmosphere. Ideal solid solutions of Cu(2)ZnSnS(4) and Ag(2)ZnSnS(4) with a kesterite structure ((Cu(x)Ag(1-x))(2)ZnSnS(4) (0 ≤x≤ 1)) were successfully obtained by this procedure, as confirmed by their X-ray diffraction (XRD) patterns and energy-diffuse X-ray (EDX) analyses. On the other hand, the solubility of ZnS in these kesterite compounds was found to be limited: the upper limit of the ratio of ZnS to (Cu(x)Ag(1-x))(2)ZnSnS(4) was less than 0.1, regardless of the Cu-Ag ratio in (Cu(x)Ag(1-x))(2)ZnSnS(4). Based on the results for dependence of their photoabsorption properties on atomic compositions, a plausible band structure is discussed. Evaluation of the photocatalytic activity for H(2) evolution of these mixed crystals from an aqueous solution containing S(2-) and SO(3)(2-) ions upon loading Ru catalysts under simulated solar radiation (AM 1.5) revealed that active compounds for this reaction should contain both dissolved ZnS and Ag components. The dissolved ZnS in (Cu(x)Ag(1-x))(2)ZnSnS(4) gave upward shifts of their conduction band edges. Moreover, the presence of Ag in the solid solution provided n-type conductivity, leading to efficient migration of photogenerated electrons to the surface to induce water reduction into H(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.