Abstract
Multicomponent signals play a key role in many application fields, such as biology, audio processing, seismology, air traffic control and security. They are well represented in the time-frequency plane where they are mainly characterized by special curves, called ridges, which carry information about the instantaneous frequency (IF) of each signal component. However, ridges identification usually is a difficult task for signals having interfering components and requires the automatic localization of time-frequency interference regions (IRs). This paper presents a study on the use of the frequency parameter of a hyperbolic-polynomial penalized spline (HP-spline) to predict the presence of interference regions. Since HP-splines are suitably designed for signal regression, it is proved that their frequency parameter can capture the change caused by the interaction between signal components in the time-frequency representation. In addition, the same parameter allows us to define a data-driven approach for IR localization, namely HP-spline Signal Interference Detection (HP-SID) method. Numerical experiments show that the proposed HP-SID can identify specific interference regions for different types of multicomponent signals by means of an efficient algorithm that does not require explicit data regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.