Abstract

AbstractThe hierarchical aggregation of molecular nanostructures from multiple components is a grand synthetic challenge, which requires highly selective linkage control. We demonstrate how two orthogonal linkage groups, that is, organotin and lanthanide cations, can be used to drive the aggregation of a giant molecular metal oxide superstructure. The title compound {[(Sn(CH3)2)2O]4{[CeW5O18] [TeW4O16][CeSn(CH3)2]4[TeW8O31]4}2}46− (1 a) features dimensions of ca. 2.2×2.3×3.4 nm3 and a molecular weight of ca. 25 kDa. Structural analysis shows the hierarchical aggregation from several independent subunits. Initial biomedical tests show that 1 features an inhibitory effect on the proliferation of HeLa cells based on an apoptosis pathway. In vivo experiments in mice reveal the antiproliferative activity of 1 and open new paths for further development of this new compound class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call