Abstract
Recently, exploration and development of oil sands are thriving due to high oil price. Because oil sands reservoir usually exists as a thin layer, multicomponent VSP, which has the advantage of the high-resolution around the borehole, is more effective than surface seismic survey in exploring oil sand reservoir. In addition, prestack phase-screen migration is effective for multicomponent seismic data because it is based on an one-way wave equation. In this study, we examined the applicability of the prestack phase-screen migration for multicomponent RVSP data to image the thin oil sand reservoir. As a preprocessing tool, we presented a method for separating P-wave and PS-wave from multicomponent RVSP data by using incidence angle and rotation matrix. To verify it, we have applied the developed wavefield separation method to synthetic data obtained from the velocity model including a horizontal layer and dipping layers. Also, we compared the migrated image by using P-wave with that by using PS-wave. As a result, the PS-wave migrated image has higher resolution and wide coverage than P-wave migrated image. Finally, we have applied the prestack phase-screen migration to the synthetic data from the velocity model simulating oil sand reservoir in Canada. The results show that the PS-wave migrated image describe the top and bottom boundaries of the thin oil sand reservoir more clearly than the P-wave migrated image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.