Abstract

Proof-theoretic method has been successfully used almost from the inception of interpolation properties to provide efficient constructive proofs thereof. Until recently, the method was limited to sequent calculi (and their notational variants), despite the richness of generalizations of sequent structures developed in structural proof theory in the meantime. In this paper, we provide a systematic and uniform account of the recent extension of this proof-theoretic method to hypersequents, nested sequents, and labelled sequents for normal modal logic. The method is presented in terms and notation easily adaptable to other similar formalisms, and interpolant transformations are stated for typical rule types rather than for individual rules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.