Abstract

Zero-dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4 PbMn0.69 Sn0.31 Br8 , in which the organic cation N-benzylhexamethylenetetrammonium (HMTA+ , C13 H19 N4 + ) cocrystallizes with PbBr4 2- , MnBr4 2- , and SnBr4 2- . The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single-crystalline "host-guest" system to exhibit emissions from multiple "guest" metal halide species simultaneously. The combination of these emissions led to near-perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm- to cool-white emissions could be generated by controlling the excitation wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call