Abstract

Multicomponent metal–organic frameworks (MOFs) comprise multiple, structurally diverse linkers fixed into an ordered lattice by metal ions or clusters as secondary building units (SBUs). Here, we show how multicomponent MOFs are ideal platforms for engineering materials with high levels of vacancy defects. First, a new type of quaternary MOF that is built up from two neutral, linear ditopic linkers, a 3-fold-symmetric carboxylate ligand, and a dinuclear paddlewheel SBU was synthesized. This MOF, named MUF-32 (MUF = Massey University Framework), is constructed from dabco, 4,4′-bipyridyl (bipy), 4,4′,4″-nitrilotrisbenzoate (ntb), and zinc(II), and it adopts an ith-d topology. The zinc(II) ions and ntb ligand define an underlying [Zn2(ntb)4/3] sublattice (with pto topology) that is “load bearing” and maintains the structural integrity of the framework. On the other hand, the dabco and bipy ligands are “decorative”, and high levels of vacancy defects can be introduced by their partial omission or removal. The...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.