Abstract

ObjectivePlaque rupture in atherosclerotic carotid arteries is a main cause of ischemic stroke and it is correlated with high plaque stresses. Hence, analyzing stress patterns is essential for plaque specific rupture risk assessment. However, the critical information of the multicomponent material properties of atherosclerotic carotid arteries is still lacking greatly. This work aims to characterize component-wise material properties of atherosclerotic human carotid arteries under (almost) physiological loading conditions. MethodsAn inverse finite element modeling (iFEM) framework was developed to characterize fibrous intima and vessel wall material properties of 13 cross sections from five carotids. The novel pipeline comprised ex-vivo inflation testing, pre-clinical high frequency ultrasound for deriving plaque deformations, pre-clinical high-magnetic field magnetic resonance imaging, finite element modeling, and a sample efficient machine learning based Bayesian Optimization. ResultsThe nonlinear Yeoh constants for the fibrous intima and wall layers were successfully obtained. The optimization scheme of the iFEM reached the global minimum with a mean error of 3.8% in 133 iterations on average. The uniqueness of the results were confirmed with the inverted Gaussian Process (GP) model trained during the iFEM protocol. ConclusionThe developed iFEM approach combined with the inverted GP model successfully predicted component-wise material properties of intact atherosclerotic human carotids ex-vivo under physiological-like loading conditions. SignificanceWe developed a novel iFEM framework for the nonlinear, component-wise material characterization of atherosclerotic arteries and utilized it to obtain human atherosclerotic carotid material properties. The developed iFEM framework has great potential to be advanced for patient-specific in-vivo application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.