Abstract
Over the last 10 years the design of catalyst particles and porous structures has made considerable progress. Due to the complicated interaction of diffusion and reaction in catalysts, more detailed models of porous structures are needed. We have based our model on a three-dimensional network of interconnected cylindrical pores as pore model, although the treatment is applicable to alternative pore geometries, e.g., slit pores. The network assumed has predefined distributions of pore radii, connectivity, and porosity. Mass transport in the individual pores of the network is described by the dusty-gas model. In contrast to previous publications, the present network model can be applied to any common reaction kinetics. This becomes quite inevitable in order to make three-dimensional network models applicable to practical problems in industry. To solve the mass balances within the entire network, the mass balances for individual pores have to be solved simultaneously, since these mass balances are coupled by...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.