Abstract

A novel multicomponent crystal (MC) of mefenamic acid (MA) and N-methyl-d-glucamine (MG) had been prepared to improve the physicochemical properties of poorly soluble drugs, and was characterized for its physicochemical properties by powder X-ray diffraction analysis, differential scanning calorimetry thermal analysis, FT-IR spectroscopy, in vitro dissolution rate, and physical stability. In addition, the crystal structure was determined by single-crystal X-ray diffraction analysis. The differential scanning calorimetry thermogram of the MA-MG binary system exhibits a single and sharp endothermic peak at 151.20°C, which was attributed to the melting point of a MC of MA-MG. FT-IR spectroscopy analysis showed the occurrence of solid-state interaction by involving proton transfer between MA and MG. The crystal structure analysis confirmed that MA-MG formed 1:1 ratio salt type MC. The formation of a MC of MA with MG significantly improved the dissolution rate of MA in compared to intact MA, and also the crystal demonstrated a good stability under a high relative humidity. These good properties would be attributed to the layer structure of MA and MG in the crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call