Abstract
AbstractConstructing stable surface modification layer is an effective strategy to suppress dendrite growth and side reactions of Zinc (Zn) metal anode in aqueous Zn‐ion battery. Herein, a multicomponent Cu−Zn alloy interlayer with superior Zn affinity, high toughness and effective inhibition effect on lattice distortion is constructed on Zn foil (Cu−Zn@Zn) to fabricate ultra‐stable Zn metal anode. Owning to the advantages of high binding energy of Cu−Zn alloy layer with Zn atoms and less contact area between metallic Zn and electrolyte, the as‐prepared Cu−Zn@Zn electrode not only restricts the aggregation of Zn atoms, but also suppresses the pernicious hydrogen evolution and corrosion, leading to homogeneous Zn deposition and outstanding electrochemical performances. Accordingly, the symmetric battery with Cu−Zn@Zn electrode exhibits an ultra‐long cycle life of 5496 h at 1 mA cm−2 for 1 mAh cm−2, and the Cu−Zn@Zn//V2O5 pouch cell demonstrates excellent cycling stability with a capacity retention of 88 % after 600 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.