Abstract

Multicomponent methods seek to treat select nuclei, typically protons, fully quantum mechanically and equivalent to the electrons of a chemical system. In such methods, it is well-known that due to the neglect of electron-proton correlation, a Hartree-Fock (HF) description of the electron-proton interaction catastrophically fails leading to qualitatively incorrect protonic properties. In single-component quantum chemistry, the qualitative failure of HF is normally indicative of the need for multireference methods such as complete active space self-consistent field (CASSCF). While a multicomponent CASSCF method was implemented nearly 20 years ago, it is only able to perform calculations with very small active spaces (∼105 multicomponent configurations). Therefore, in order to extend the realm of applicability of the multicomponent CASSCF method, this study derives and implements a new two-step multicomponent CASSCF method that uses multicomponent heat-bath configuration interaction for the configuration interaction step, enabling calculations with very large active spaces (up to 16 electrons in 48 orbitals). We find that large electronic active spaces are needed to obtain qualitatively accurate protonic densities for the HCN and FHF- molecules. Additionally, the multicomponent CASSCF method implemented here should have further applications for double-well protonic potentials and systems that are inherently electronically multireference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.