Abstract

In this paper a signal analysis framework for estimating time-varying amplitude and frequency functions of multicomponent amplitude and frequency modulated (AM–FM) signals is introduced. This framework is based on local and non-linear approaches, namely Energy Separation Algorithm (ESA) and Empirical Mode Decomposition (EMD). Conjunction of Discrete ESA (DESA) and EMD is called EMD–DESA. A new modified version of EMD where smoothing instead of an interpolation to construct the upper and lower envelopes of the signal is introduced. Since extracted IMFs are represented in terms of B-spline (BS) expansions, a closed formula of ESA robust against noise is used. Instantaneous Frequency (IF) and Instantaneous Amplitude (IA) estimates of a multicomponent AM–FM signal, corrupted with additive white Gaussian noise of varying SNRs, are analyzed and results compared to ESA, DESA and Hilbert transform-based algorithms. SNR and MSE are used as figures of merit. Regularized BS version of EMD–ESA performs reasonably better in separating IA and IF components compared to the other methods from low to high SNR. Overall, obtained results illustrate the effectiveness of the proposed approach in terms of accuracy and robustness against noise to track IF and IA features of a multicomponent AM–FM signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.