Abstract

The paper studies the problem of the spread of multi-competitive viruses across a (time-varying) population network and an infrastructure network. To this end, we devise a variant of the classic (networked) susceptible–infected-susceptible (SIS) model called the multi-competitive time-varying networked susceptible-infected-water-susceptible (SIWS) model. We establish a sufficient condition for exponentially fast eradication of a virus when a) the graph structure does not change over time; b) the graph structure possibly changes with time, interactions between individuals are symmetric, and all individuals have the same healing and infection rate; and c) the graph is directed and is slowly-varying, and not all individuals necessarily have the same healing and infection rates. We also show that the aforementioned conditions for eradication of a virus are robust to variations in the graph structure of the population network provided the variations are not too large. For the case of time-invariant graphs, we give a lower bound on the number of equilibria that our system possesses. Finally, we provide an in-depth set of simulations that not only illustrate the theoretical findings of this paper but also provide insights into the endemic behavior for the case of time-varying graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.