Abstract

This study reports a promising approach to fabricate bacterial cellulose (BC)-based macrobead catalysts with improved catalytic activities and recyclability for organic reactions in aqueous media. To this end, the consecutive extrusion and gelation of BC precursor fluids is conducted using a combined micronozzle device to compartmentalize the resulting BC macrobeads in a programmed manner. The use of BCs laden with Au and Pd nanoparticles (NPs), and Fe3 O4 NPs led to the production of catalytically and magnetically compartmentalized BC macrobeads, respectively. Through the model reduction reaction of 4-nitrophenol to 4-aminophenol using NaBH4 , it is finally demonstrated that the BC macrobead catalysts not only enhance catalytic activities while exhibiting high reaction yields (>99%) in aqueous media, but also repeatedly retrieve the products with ease in response to the applied magnetic field, enabling the establishment of a useful green catalyst platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.