Abstract

ABSTRACT We present simultaneous, multicolour optical light curves of the companion star to the black-widow pulsar PSR J2051−0827, obtained approximately 10 yr apart using ULTRACAM and HiPERCAM, respectively. The ULTRACAM light curves confirm the previously reported asymmetry in which the leading hemisphere of the companion star appears to be brighter than the trailing hemisphere. The HiPERCAM light curves, however, do not show this asymmetry, demonstrating that whatever mechanism is responsible for it varies on time-scales of a decade or less. We fit the symmetrical HiPERCAM light curves with a direct-heating model to derive the system parameters, finding an orbital inclination of $55.9^{+4.8}_{-4.1}$ degrees, in good agreement with radio-eclipse constraints. We find that approximately half of the pulsar’s spin-down energy is converted to optical luminosity, resulting in temperatures ranging from approximately $5150^{+190}_{-190}$ K on the day side to $2750^{+130}_{-150}$ K on the night side of the companion star. The companion star is close to filling its Roche lobe ($f_{\rm RL} =0.88^{+0.02}_{-0.02}$) and has a mass of $0.039^{+0.010}_{-0.011}$ M⊙, giving a mean density of $20.24^{+0.59}_{-0.44}$ g cm−3 and an apsidal motion constant in the range 0.0036 < k2 < 0.0047. The companion mass and mean density values are consistent with those of brown dwarfs, but the apsidal motion constant implies a significantly more centrally condensed internal structure than is typical for such objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call