Abstract

Ln3+-doped fluoride is a far efficient material for realizing multicolor emission, which plays an important part in full-color displays, biolabeling, and MRI. However, studies on the multicolor tuning properties of Ln3+-doped fluoride are mainly concentrated on a complicated process using three or more dopants, and the principle of energy transfer mechanism is still unclear. Herein, multicolor tunable emission is successfully obtained only by codoping with Tb3+ and Eu3+ ions in β-NaGdF4 submicrocrystals via a facile hydrothermal route. Our work reveals that various emission colors can be obtained and tuned from red, orange-red, pink, and blue-green to green under single excitation energy via codoping Tb3+ and Eu3+ with rationally changed Eu3+/Tb3+ molar ratio due to the energy transfer between Tb3+ and Eu3+ ions in the β-NaGdF4 host matrix. Meanwhile, the energy transfer mechanism in β-NaGdF4: x Eu3+/y Tb3+ (x + y = 5 mol %) submicrocrystals is investigated. Our results evidence the potential of the dopants' distribution density as an effective way for analyzing energy transfer and multicolor-controlled mechanism in other rare earth fluoride luminescence materials. Discussions on the multicolor luminescence under a certain dopant concentration based on single host and wavelength excitation are essential toward the goal of the practical applications in the field of light display systems and optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call