Abstract

The synthesis, structural analysis, and NIR-to-visible upconversion luminescence of color-tunable Er:Yb:SrFX (X = Cl, Br) nanocrystals are reported. Green, orange, and red-emitting upconverters were achieved by employing chemically and structurally tunable alkaline-earth fluorohalides as hosts for Er3+–Yb3+ activator–sensitizer pairs. Solution-phase thermolysis of metal trifluoroacetates and of the corresponding trihaloacetic acid was utilized to synthesize Er:Yb:SrFCl and Er:Yb:SrFBr nanocrystals with average sizes of ≈15 and 50 nm, respectively. X-ray total scattering and Sr K edge absorption spectroscopy showed that a bulk-type crystallographic model provided an adequate description of the average and local structures of Er:Yb:SrFBr but failed to describe the local structure of Er:Yb:SrFCl nanocrystals, as deviations from the model were observed in the second coordination shell of strontium. Steady-state and time-resolved spectrofluorometric analyses showed that the red-to-green ratio of the upconverted emission could be compositionally tuned between 1 (green emitter) and 50 (red emitter). Single-band, red-emitting Er:Yb:SrFCl nanocrystals with Er3+ excited state lifetimes in the 100–160 μs range were thus achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.