Abstract

Colorimetric aptasensors have been intensively studied for the ochratoxin A (OTA) detection, but they mostly exhibit just one-color change, resulting in poor visual resolution and limited use for semi-quantitative analysis. Thus, we designed a high-resolution colorimetric assay on the basis of aptamer structural switching and enzyme-induced metallization of gold nanorods (AuNRs). DNA-alkaline phosphatase (ALP)-immobilized magnetic beads were prepared. The aptamer bounded to OTA to form G-quadruplexes, releasing ALP-labelled complementary DNA (cDNA-ALP). After magnetic separation, cDNA-ALP catalyzed the decomposition of ascorbic acid 2-phosphate to ascorbic acid that reduced Ag+, forming an Ag shell on the surface of AuNRs. This caused a blue-shift of the longitudinal local surface plasmon resonance peak of the AuNRs and a naked eye visible multicolor change. Under optimal conditions, the assay exhibited a 9.0 nM detection limit for OTA, with high specificity. This method is promising for the on-site visual semi-quantitative detection of mycotoxins in foods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.